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This paper presents a thorough
explanation of geometric, loading and
deflection relationships of reinforced
urethane timing belts. It covers valuable
background for the step by step selection
procedure for the "Belt Sizing Guide"
available on the Gates Mectrol web
site. Traditional understanding of
timing belt drives comes from power
transmission applications. However, the
loading conditions on the belt differ

considerably between power
transmission applications and conveying
and linear positioning applications. This
paper presents analysis of conveying and
linear positioning applications. Where
enlightening, reference will be made to
power transmission and rotary
positioning drives. For simplicity, only
two pulley arrangements are considered
here; however, the presented theory can
be extended to more complex systems.

Belt and Pulley Pitch

Belt pitch, p, is defined as the distance
between the centerlines of two adjacent
teeth and is measured at the belt pitch line
(Fig. 1). The belt pitch line is identical to
the neutral bending axis of the belt and
coincides with the center line of the cords.

Pulley pitch is measured on the pitch
circle and is defined as the arc length
between the centerlines of two adjacent
pulley grooves (Figs. 1a and 1b). The pitch
circle coincides with the pitch line of the
belt while wrapped around the pulley. In
timing belt drives the pulley pitch
diameter, d, is larger than the pulley

Timing Belt Theory

Introduction

Geometric Relationships

Figure 1a. Belt and pulley mesh for inch series
and metric T-series, HTD and STD
series geometry.

Figure 1b. Belt and pulley mesh for AT-
series geometry.
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outside diameter, do. The pulley pitch
diameter is given by

d
p z p=

⋅
π

(1)

where p is the nominal pitch and zp the
number of pulley teeth.
The radial distance between pitch diameter
and pulley outer diameter is called pitch
differential, u, and has a standard value for
a given belt section of inch pitch and
metric T series belts (see Table 1). The
pulley outside diameter can be expressed
by

d d u
p z

uo
p= − =

⋅
−2 2

π
(2)

As inch pitch and metric T series belts are
designed to ride on the top lands of pulley
teeth, the tolerance of the outside pulley
diameter may cause the pulley pitch to
differ from the nominal pitch (see Fig. 1a).

On the other hand, metric AT series belts
are designed to contact bottom lands (not
the top lands) of a pulley as shown in Fig.
1b. Therefore, pulley pitch and pitch
diameter are affected by tolerance of the
pulley root diameter, dr, which can be
expressed by

d d u
p z

ur r
p

r= − =
⋅

−2 2
π

(3)

The radial distance between pitch diameter

Belt section p - belt
pitch

H - belt
height

u - pitch
differential

h - tooth height

XL in 0.200 0.090 0.010 0.050
mm 5.1 2.3 0.3 1.3

L in 0.375 0.140 0.015 0.075
mm 9.5 3.6 0.4 1.9

H in 0.500 0.160 0.027 0.090
mm 12.7 4.1 0.7 2.3

XH in 0.875 0.440 0.055 0.250
mm 22.2 11.2 1.4 6.4

T5 in 0.197 0.087 0.020 0.047
mm 5.0 2.2 0.5 1.2

T10 in 0.394 0.177 0.039 0.098
mm 10.0 4.5 1.0 2.5

T20 in 0.787 0.315 0.059 1.500
mm 20.0 8.0 1.5 5.0

HTD 5 in 0.197 0.142 0.028 0.83
mm 5.0 3.6 0.7 2.1

HTD 8 in 0.315 0.220 0.028 0.134
mm 8.0 5.6 0.7 3.4

HTD 14 in 0.551 0.394 0.055 0.236
mm 14.0 10.0 1.4 6.0

STD 5 in 0.197 0.134 0.028 0.075
mm 5.0 3.4 0.7 1.9

STD 8 in 0.315 0.205 0.028 0.11
mm 8.0 5.2 0.7 3.0

STD 14 in 0.551 0.402 0.055 0.209
mm 14.0 10.2 1.4 5.3

Table 1
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and root diameter, ur, has a standard value
for a particular AT series belt sections (see
Table 2).

Belt Length and Center Distance

Belt length, L, is measured along the pitch
line and must equal a whole number of
belt pitches (belt teeth), zb

L p zb= ⋅ (4)

Most linear actuators and conveyors are
designed with two equal diameter pulleys.
The relationship between belt length, L,
center distance, C, and pitch diameter, d,
is given by

L C d= ⋅ + ⋅2 π (5)
For drives with two unequal pulley
diameters (Fig. 2) the following
relationships can be written:
Angle of wrap, θθθθ1, around the small pulley

θ1
2 12
2

= −
⋅

⎛
⎝⎜

⎞
⎠⎟

arccos
d d

C
(6)

where d1 and d2 are the pitch diameters of
the small and the large pulley,
respectively.

Angle of wrap, θθθθ2, around the large pulley

θ π θ2 12= ⋅ − (7)

Span length, Ls

Figure 2. Belt drive with unequal pulley diameters.

Belt section p - belt
pitch

H - belt
height

ur - pitch
differential

h - tooth
height

AT5 in 0.197 0.106 0.077 0.047
mm 5.0 2.7 2.0 1.2

AT10 in 0.394 0.177 0.138 0.098
mm 10.0 4.5 3.5 2.5

AT20 in 0.787 0.315 0.256 0.197
mm 20.0 8.0 6.5 5.0

Table 2
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L Cs = ⋅ ⎛
⎝⎜

⎞
⎠⎟

sin
θ1

2
(8)

Belt length, L

( )

L C
d

d

= ⋅ ⋅ ⎛
⎝⎜

⎞
⎠⎟

+ ⋅

+ ⋅ − ⋅

2
2 2

2
2

1
1

1

1
2

sin
θ θ

π θ

(9)

Since angle of wrap,θθθθ1, is a function of the
center distance, C, Eq. (9) does not have a
closed form solution for C. It can be

solved using any of available numerical
methods.
An approximation of the center distance as
a function of the belt length is given by

( )
C

Y Y d d
≈

+ − ⋅ −2
2 1

22

4
(10)

where
( )

Y L
d d

= −
⋅ +π 2 1

2

A timing belt transmits torque and motion
from a driving to a driven pulley of a
power transmission drive (Fig. 3), or a
force to a positioning platform of a linear
actuator (Fig. 4). In conveyors it may also
carry a load placed on its surface (Fig. 6).

Torque, Effective Tension, Tight and
Slack Side Tension

During operation of belt drive under load a
difference in belt tensions on the entering
(tight) and leaving (slack) sides of the

driver pulley is developed. It is called
effective tension, Te, and represents the
force transmitted from the driver pulley to
the belt

T T Te = −1 2 (11)

where T1 and T2 are the tight and slack side
tensions, respectively.

The driving torque, M (M1 in Fig. 3), is
given by

Forces Acting in Timing Belt Drives

Figure 3. Power transmission and rotary positioning.
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M T
d

e= ⋅
2

(12)

where d (d1 in Fig. 3) is the pitch diameter
of the driver pulley.
The effective tension generated at the
driver pulley is the actual working force
that overcomes the overall resistance to the
belt motion. It is necessary to identify and
quantify the sum of the individual forces
acting on the belt that contribute to the
effective tension required at the driver
pulley.

In power transmission drives (Fig. 3), the
resistance to the motion occurs at the
driven pulley. The force transmitted from
the belt to the driven pulley is equal to Te.

The following expressions for torque
requirement at the driver can be written

ηωηω

η

⋅
=

⋅⋅
⋅=

⋅=⋅=

1

2

22

12

2

121
1 2

P

d

dP

d

dMd
TM e

(13)

where M1 is the driving torque, M2 is the
torque requirement at the driven pulley, P2

is the power requirement at the driven
pulley, ωωωω1 and ωωωω2 are the angular speeds of
the driver and driven pulley respectively,
d1 and d2 are the pitch diameters of the
driver and driven pulley respectively, and
ηηηη is the efficiency of the belt drives
(η = −094 0 96. .  typically). The angular

speeds of the driver and driven pulley ωωωω1

and ωωωω2 are related in a following form:

ω ω2 1
1

2
= ⋅ d

d
(14)

The relationship between the angular
speeds and rotational speeds is given by

ω
π

1 2
1 2

30,
,=

⋅n
(15)

where n1 and n2 are rotational speeds of
the driver and driven pulley in revolutions
per minute [rpm], and ωωωω1 and ωωωω2 are
angular velocities of the driver and driven
pulley in radians per second.

In linear positioners (Fig. 4) the main load
acts at the positioning platform (slider). It
consists of acceleration force Fa (linear
acceleration of the slider), friction force of
the linear bearing, Ff, external force (work

θ

1T

1T

s2F

aiF

sa

Fw

s

Fs1

eT

iT

fF

m

T i

d

F =m a

2L

Midler

T1

1L

2Tv, a

driver

d

Figure 4. Linear positioner - configuration I.
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load), Fw, component of weight of the slide
Fg parallel to the belt in inclined drives,
inertial forces to accelerate belt, Fab, and
the idler pulley, Fai (rotation)

T F F F F F Fe a f w g ab ai= + + + + + (16)

The individual components of the effective
tension, Te, are given by

F m aa s= ⋅ (17)

where ms is the mass of the slider or
platform and a is the linear acceleration
rate of the slider,

F m g Ff r s fi= ⋅ ⋅ ⋅ +μ βcos (18)

where μμμμr is the dynamic coefficient of
friction of the linear bearing (usually
available from the linear bearing
manufacturer), Ffi is a load independent
resistance intrinsic to linear motion (seal
drag, preload resistance, viscous resistance
of the lubricant, etc.) and ββββ is the angle of
incline of the linear positioner,

F m gg s= ⋅ ⋅ sinβ (19)

F
w L b

g
aab

b= ⋅ ⋅ ⋅ (20)

where L is the length of the belt, b is the
width of the belt, wb is the specific weight
of the belt and g is the gravity,

F
J

d

m d

d
aai

i i b= ⋅ ⋅ = ⋅ +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ⋅

2

2
1

2

2

α
(21)

where Ji is the inertia of the idler pulley, αααα
is the angular acceleration of the idler, mi

is the mass of the idler, d is the diameter of
the idler and db is the diameter of the idler
bore (if applicable).

An alternate linear positioner arrangement
is shown in Fig. 5. This drive, the slide
houses the driver pulley and two idler rolls
that roll on the back of the belt. The slider
moves along the belt that has both ends
clamped in stationary fixtures.

Similar to the linear positioning drive such
as configuration I” the effective tension is
comprised of linear acceleration force Fa,
friction force of the linear bearing, Ff,
external force (work load), Fw, component
of weight of the slide Fg parallel to the belt
in inclined drives and inertial force to
accelerate the idler pulleys, Fai (rotation)

T F F F F Fe a f w g ai= + + + + ⋅2 (22)

The individual components of the effective
tension, Te, are given by

( )F m m m aa s p i= + + ⋅ ⋅2 (23)

2TTis2 mF

Fa

sm

v,a

i

2

2T

fF

s1F
d

Te
mp1

M

L

s2FdbiT1T

dimi

Fw

1L

T

Figure 5. Linear positioner - configuration II.



8

where ms is the mass of the slider or
platform, mp is the mass of the driver
pulley, mi is the mass of the idler rollers
and a is the translational acceleration rate
of the slider,

( )F m m m g

F

f r s p i

fi

= + + ⋅ ⋅

+

μ β2 cos
(24)

where μμμμr is the dynamic coefficient of
friction of the linear bearing, Ffi is a load
independent resistance intrinsic to linear
motion and ββββ is the angle of incline of the
linear positioner,

( )F m m m gg s p i= + + ⋅ ⋅ ⋅2 sinβ (25)

where ββββ is the angle of incline of the linear
positioner,

a
d

d
m

d

J
F

i

b
i

i
ai ⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
+⋅=

⋅⋅
⋅=

2

2

1
2

2
α

(26)

where Ji is the inertia of the idler pulley
reflected to the driver pulley, αααα is the

angular acceleration of the driver pulley,
mi is the mass of the idler, d is the
diameter of the driver, di is the diameter of
the idler and db is the diameter of the idler
bore (if applicable).

In inclined conveyors in Fig. 6, the
effective tension has mainly two forces to
overcome: friction and gravitational
forces. The component of the friction force
due to the conveyed load, Ff, is given by

F N Wf k
k

n

k
k

nc c

= ⋅ = ⋅ ⋅
= =

∑ ∑μ μ β( ) ( )cos
1 1

(27)

where μμμμ is the friction coefficient between
the belt and the slider bed, N(k) is a
component of weight, W(k), of a single
conveyed package perpendicular to the
belt, nc is the number of packages being
conveyed, index k designates the kth piece
of material along the belt and ββββ is the
angle of incline. When conveying granular
materials the friction force is given by

La

Lm

Lw
Lwa

driver

idler

Fs2

s1F

TeM

v,a

Ff

faF

W
N

F

(k)
(k)

g(k)

1

1L*

*L2

1T

T2

iTT2

T2

Figure 6. Inclined conveyor with material accumulation.
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F w Lf m m= ⋅ ⋅μ βcos (28)

where wm is weight distribution over a unit
of conveying length and Lm is the
conveying length.

Some conveying applications include
material accumulation (see Fig. 6). Here
an additional friction component due to
the material sliding on the back surface of
the belt is present and is given by

( )

( )

F N

W

fa k
k

n

k
k

n

a

a

= + ⋅

= + ⋅ ⋅

=

=

∑

∑

μ μ

μ μ β

1
1

1
1

( )

( )cos

(29)

where na is the number of packages being
accumulated and μμμμ1 is the friction
coefficient between belt and the
accumulated material. Similar to the
expression for conveying, Eq. (29) can be
rewritten as:

( )F w Lfa ma a= + ⋅ ⋅μ μ β1 cos (30)

where wma is weight distribution over a
unit of accumulation length and La is the
accumulation length.

The gravitational load, Fg, is the
component of material weight parallel to
the belt

F Wg k
k

n nc a

= ⋅
=

+

∑sin ( )β
1

(31)

Note that the Eq. (31) can be also
expressed as

( )F w L w Lg m m ma a= ⋅ + ⋅ ⋅sinβ (32)

In vacuum conveyors (Fig. 7) normally, the
main resistance to the motion (thus the
main component of the effective tension)
consists of the friction force Ffv created by
the vacuum between the belt and slider
bed. Ffv is given by

F P Afv v= ⋅ ⋅μ (33)

where P is the magnitude of the vacuum
pressure relative to the atmospheric
pressure and Av is the total area of the
vacuum openings in the slider bed. A
uniformly distributed pressure accounts for
a linear increase of the tight side tension as
depicted in Fig. 7.

vAP vacuum chamber

Ti

2T

T1

2L*

*L1

fvF v,a

M eT
Fs1s2F

idler driver

2T T2

Figure 7. Vacuum conveyor.
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Shaft forces

Force equilibrium at the driver or driven
pulley yields relationships between tight
and slack side tensions and the shaft
reaction forces Fs1 or Fs2. In power
transmission drives (see Fig. 3) the forces
on both shafts are equal in magnitude and
are given by

F T T T Ts1 2 1
2

2
2

1 2 12, cos= + − ⋅ ⋅ ⋅ θ (34)

where θθθθ1 is angle of belt wrap around
driver pulley.
Note that unlike power transmission
drives, both linear positioners (Fig 4) and
conveyors (Figs. 6 and 7) have no driven
pulley - the second pulley is an idler.

In conveyor and linear positioner drives
the shaft force at the driver pulley, Fs1, is
given by

F T T T Ts1 1
2

2
2

1 2 12= + − ⋅ ⋅ ⋅ cosθ (35)

whenθ θ1 2 180≠ ≠  (unequal pulley
diameters) and by

F T Ts1 1 2= + (36)

when θ θ1 2 180= =  (equal pulley

diameters), where θθθθ2 is angle of belt wrap
around idler pulley.

The shaft force at the idler pulley, Fs2,
when the load (conveyed material or
slider) is moving toward the driver pulley
is given by

F T T T Ts2 2
2

2
2

2 2 22= + − ⋅ ⋅ ⋅" " cosθ (37)

whenθ θ1 2 180≠ ≠  or by

F T Ts2 2 2= + " (38)

when θ θ1 2 180= = . T2
"  is given by

T T Fai2 2
" = + (39)

where Fai is given by Eq. (21).

However, when the load is moving away
from the driver pulley the shaft force at the
idler pulley, Fs2, is given by

F T T T Ts2 1
2

1
2

1 1 12= + − ⋅ ⋅ ⋅' ' cosθ (40)

whenθ θ1 2 180≠ ≠  or by

F T Ts2 1 1= + ' (41)

when θ θ1 2 180= = . T1
'  is given by

T T Fai1 1
' = − (42)

Eqs. (39) and (42) assume no friction in
the bearings supporting the idler pulley.
Observe that during constant velocity
motion Eq. (38) can be expressed as

F Ts2 22= ⋅ (43)

The same applies to Eq. (41).

In linear positioning drives such as
“configuration II” (shown in Fig. 5) the
shaft force of the driver pulley, Fs1, is
given by Eq. (35). The shaft forces on the
idler rollers can be expressed by

F T T T T

F T T T T

s

s

2 1
2

1
2

1 1 2

1 2
2

2
2

2 2 2

2

2

' ' ' '

" " " "

cos

cos

= + − ⋅ ⋅ ⋅

= + − ⋅ ⋅ ⋅

θ

θ
(44)

where Fs2
'  is the shaft force at the idler on

the side of the tight side tension,θ 2
'  is the

angle of belt wrap around the idler pulley

on the side of the tight side tension, Fs2
"  is

the shaft force at the idler on the side of

the slack side tension andθ 2
"  is the angle

of belt wrap around the idler pulley on the
side of the slack side tension. Tension
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forces T1
' and T2

"  are given by Eqs. (39)
and (42).

In the drive shown in Fig. 5 θ1 180= ° and

θ θ2 2 90' "= = ° , and the shaft force at the
driver pulley is given by Eq. (36) and the
shaft forces at the idler rollers become

F T T

F T T

s

s

2 1
2

1
2

2 2
2

2
2

' '

" "

= +

= +
(45)

Observe that in reversing drives (like
linear positioners in Fig. 4) the shaft force
at the idler pulley, Fs2, changes depending
on the direction of rotation of the driver
pulley. For the same operating conditions
Fs2 is larger when the slider moves away
from the driver pulley.

To determine tight and slack side tensions
as well as the shaft forces (2 equations
with 3 unknowns), given either the torque
M or the effective tension Te, an additional
equation is still required. This equation
will be obtained from analysis of belt pre-
tension methods presented in the next
section.

Belt Pre-tension

The pre-tension, Ti, (sometimes referred to
as initial tension) is the belt tension in an
idle drive (Fig. 8). When belt drive
operates under load tight side and slack
sides develop. The pre-tension prevents
the slack side from sagging and ensures
proper tooth meshing. In most cases,
timing belts perform best when the
magnitude of the slack side tension, T2, is
10% to 30% of the magnitude of the
effective tension, Te

( )T Te2 01 0 3∈ ⋅. ,..., . (46)

In order to determine the necessary pre-
tension we need to examine a particular
drive configuration, loading conditions
and the pre-tensioning method.

To pre-tension a belt properly, an
adjustable pulley or idler is required (Figs.
3, 4, 6 and 7). In linear positioners where
open-ended belts are used (Figs. 4 and 5)
the pre-tension can also be attained by
tensioning the ends of the belt. In Figs. 3
to 7 the amount of initial tension is
graphically shown as the distance between
the belt and the dashed line.

Although generally not recommended, a
configuration without a mechanism for
adjusting the pre-tension may be
implemented. In this type of design, the
center distance has to be determined in a
way that will ensure an adequate pre-
tension after the belt is installed. This
method is possible because after the initial
tensioning and straightening of the belt,
there is practically no post-elongation
(creep) of the belt. Consideration must be
given to belt elasticity, stiffness of the
structure and drive tolerances.

Drives with a fixed center distance are
attained by locking the position of the
adjustable shaft after pre-tensioning the
belt (Figs. 3, 4, 6 and 7). The overall belt
length remains constant during drive
operation regardless of the loading
conditions (belt sag and some other minor
influences are neglected). The reaction
force on the locked shaft generally changes
under load. We will show later that the
slack and tight side tensions depend not
only on the load and the pre-tension, but
also on the belt elasticity. Drives with a
fixed center distance are used in linear
positioning, conveying and power
transmission applications.
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Drives with a constant slack side tension
have an adjustable idler tensioning the
slack side which is not locked (floating)
(Figs. 9 and 10). During operation, the
consistency of the slack side tension is
maintained by the external tensioning
force, Fe. The length increase of the tight
side is compensated by a displacement of
the idler. Drives with a constant slack side
tension may be considered for some
conveying applications.

Resolving the Tension Forces

Drives with a constant slack side tension
have an external load system, which can

be determined from force analysis alone.
Force equilibrium at the idler gives

T T
F

i
e

e
≈ =

⋅ ⎛
⎝⎜

⎞
⎠⎟

2

2
2

sin
θ

(47)

where Fe is the external tensioning force
andθe  is the wrap angle of the belt around
the idler (Figs. 9 and 10).
Eq. (47) together with Eq. (11) can be used
to solve for the tight side tension, T1, as
well as the shaft reactions, Fs1 and Fs2.
Drives with a fixed center distance (Figs.
3, 4, 6 and 7) have an external load
system, which cannot be determined from

Figure 9. Power transmission drive with the constant slack side tension.

Figure 10. Vacuum conveyor with the constant slack side tension.
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force analysis alone. To calculate the belt
tension forces, T1 and T2, an additional
relationship is required. This relationship
can be derived from belt elongation
analysis. Pulleys, shafts and mounting
structures are assumed to have infinite
rigidity. Neglecting the belt sag as well as
some phenomena with little contribution
(such as bending resistance of the belt and
radial shifting of the pitch line explained
later), the total elongation (deformation) of
the belt operating under load is equal to
the total belt elongation resulting from the
belt pre-tension. This can be expressed by
the following equation of geometric
compatibility of deformation:

Δ Δ Δ

Δ Δ Δ

L L L

L L L

me

i i mi

11 22

1 2

+ + =

+ +                     
(48)

where ΔΔΔΔL11 and ΔΔΔΔL22 are tight and slack
side elongation due to T1 and T2,
respectively, ΔΔΔΔLme is the total elongation
of the belt portion meshing with the driver
(and driven) pulley, ΔΔΔΔL1i, ΔΔΔΔL2i and ΔΔΔΔLmi

are the respective deformations caused by
the belt pre-tension, Ti.

For most practical cases the difference
between the deformations of the belt in
contact with both pulleys during pre-
tension and during operation is negligible
( Δ ΔL Lme mi≈ ). Eq. (48) can be simplified

Δ Δ Δ ΔL L L Li i11 22 1 2+ = + (49)

Tensile tests show that in the tension range
timing belts are used, stress is proportional
to strain. Defining the stiffness of a unit
long and a unit wide belt as specific
stiffness, csp, the stiffness coefficients of
the belt on the tight and slack side, k1 and
k2, are expressed by

k c
b

L

k c
b

L

sp

sp

1
1

2
2

= ⋅

= ⋅

(50)

where L1 and L2 are the unstretched
lengths of the tight and slack sides,
respectively, and b is the belt width. Note
that the expressions in Eq. (50) have a
similar form to the formulation for the

axial stiffness of a bar k E
A

l
= ⋅  where E

is Young's modulus, A is cross sectional
area and l is the length of the bar.

It is known that elongation equals tension

divided by stiffness coefficient, ΔL
T

k
= ,

provided the tension force is constant over
the belt length. Thus, Eq. (49) can be
expressed as

T

k

T

k

T

k

T

k
i i1

1

2

2 1 2
+ = + (51)

Combining expressions for the stiffness
coefficients, Eq. (50) with Eq. (51) the
tight and slack side tensions, T1 and T2,
are given by

T T T
L

L L
T T

L

Li e i e1
2

1 2

2= +
+

= +  (52)

and

T T T
L

L L
T T

L

Li e i e2
1

1 2

1= −
+

= − (53)

where L is the total belt length, L1 and L2

are the lengths of the tight and slack sides
respectively. Using Eqs. (52) and (53) we
can find the shaft reaction forces, Fs1 and
Fs2.
In practice, a belt drive can be designed
such that the desired slack side tension, T2,
is equal to 10% to 30% of the effective
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tension, Te (see Eq. (46)), which secures
proper tooth meshing during belt drive
operation. Then Eq. (53) can be used to
calculate the pre-tension ensuring that the
slack side tension is within the
recommended range.

As mentioned before, Eqs. (51) through
(53) apply when tight and slack side
tensions are constant over the length. In all
other cases the elongation in Eq. (49) must
be calculated according to the actual
tension distribution. For example, the
elongation of the conveying length Lv over
the vacuum chamber length presented in
Fig. 7, caused by a linearly increasing belt

tension, equals the mean tension, T , where

T
T T= +1 2

2
, divided by the stiffness kv

where k c
b

Lv sp
v

=  of this belt portion, b is

the belt width, Lv is the length of the
vacuum chamber T1 and T2 are the
tensions at the beginning and end of the
vacuum chamber stretch, respectively.
Considering this, T1 and T2 can be
expressed by

T T T
L

L

Li e

v

1

2 2
max = +

+
(54)

T T T
L

L

Li e

v

2

1 2
min = −

+
(55)

Substituting L L
Lv

1 1 2
* = +  and

L L
Lv

2 2 2
* = +  Eqs. (54) and (55) can be

expressed in the form of Eqs. (52) and
(53), respectively.
A similar analysis can be performed for
the conveyor drive in Fig. 6, with the belt
elongation due to the mean tension

calculated over the conveying and
accumulation length, L Lm a+ . The

distance, L  ( 0 < < +L L Lm a ), from the
beginning of the conveying length to the
location on the belt corresponding to the

mean tension, T , should be calculated. The
modified tight and slack lengths take on
the following form:

L L L L L

L L L

m a1 1

2 2

*

*

= + + −

= +
(56)

Tooth Loading

Consider the belt in contact with the driver
pulleys in belt drives presented in (Figs. 3
to 10). Starting at the tight side, the belt
tension along the arc of contact decreases
with every belt tooth. At the kth tooth, the
tension forces Tk and Tk+1 are balanced by
the force Ftk at the tooth flank (Fig. 11).
The force equilibrium can be written as

T T Fk k tk+ + =+1 0 (57)

Figure 11. Tooth loading.
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In order to fulfill the equilibrium
conditions, the belt tooth inclines and
moves radially outwards as shown in Fig.
11. In addition to tooth deformation, tooth
shifting contributes to the relative
displacement between belt and pulley,
hence to the tooth stiffness.

Theoretically, the tooth stiffness increases
with increasing belt tension over the tooth,

which has also been confirmed
empirically. This results in the practical
recommendation for linear actuators to
operate under high pre-tension in order to
achieve higher stiffness, and hence, better
positioning accuracy. However, to simplify
the calculations, a constant value for the
tooth stiffness, kt, is used in the formulas
presented in the next section.

To determine the positioning error of a
linear actuator, caused by an external force
at the slide, the stiffness of tight and slack
sides as well as the stiffness of belt teeth
and cords along the arc of contact have to
be considered. Since tight and slack sides
can be considered as springs acting in
parallel, their stiffness add linearly to form
a resultant stiffness (spring) constant kr

k k k c b
L L

L Lr s= + = ⋅ +
⋅1 2

1 2

1 2
(58)

In linear positioners (Figs. 12 and 13), the
length of tight and slack side and therefore

the resultant spring constant depend on the
position of the slide. The resultant stiffness
exhibits a minimum value at the position
where the difference between tight and
slack side length is minimum.

To determine the resultant stiffness of the
belt teeth and cords in the teeth-in-mesh
area, km, observe that the belt teeth are
deformed non-uniformly and act in a
parallel like arrangement with reinforcing
cord sections, but the belt sections
between them are connected in series. The
solution to the problem is involved and

Figure 12. Position error - linear positioner under static loading condition.

Positioning Error of Timing Belt
Drives Due to Belt Elasticity
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beyond the scope of this paper but the
result is presented in Graph 1. The
ordinate is made dimensionless by
dividing km by the tooth stiffness kt. Graph
1 shows that the gradient of km (indicated
by the slope of the curve) decreases with
increasing number of teeth in mesh.

Defining the ratio
k

k
m

t
 as the virtual

number of teeth in mesh, zmv,
corresponding to the actual number of
teeth in mesh zm the stiffness of the belt
and the belt teeth around the arc of contact
is

k z km mv t= ⋅ (59)

Observe that the virtual number of teeth in
mesh, zmv, remains constant and equals 15
for the actual number of belt teeth in mesh
zm≥ 15. The result of this is that the
maximum number of teeth in mesh that
carry load is 15.

In linear positioners the displacement of
the slide due to the elasticity of the tight
and slack sides has to be added to the
displacement due to the elasticity of the

belt teeth and cords in the teeth-in-mesh
area. Therefore, the total drive stiffness, k,
is determined by the following formula:

1 1 1

k k kr m

= + (60)

In drives with a driven pulley (power
transmission drives) an additional term:

1

2km
must be added to the right-hand side

of Eq. (60). This term introduces the
stiffness of the belt and belt teeth around
the driven pulley.

The static positioning error, ΔΔΔΔx of a linear
positioner due to the elasticity of the belt
cords and teeth is

Δx
F

k
st= (61)

where Fst is the static (external) force
remaining at the slide. In Fig. 12, for
example, Fst is comprised of Ff and Fw,

and it is balanced by the static effective
tension Test at the driver pulley.
The additional rotation angle, ΔΔΔΔϕϕϕϕ, of the
driving pulley necessary for exact
positioning of the slide is

Figure 13. Following error - linear positioner under dynamic loading condition.
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Δϕ
ϕ

= =
⋅

M

k

T
d

k

est

2

(62)

Substituting M from Eq. (12) in Eq. (62)
the relationship between linear stiffness, k,
and rotational stiffness, kϕϕϕϕ, can be
obtained

k
d k

ϕ = ⋅2

4
(63)

Observe that using pulleys with a larger
pitch diameter increases the rotational
stiffness of the drive, but also increases the
torque on the pulley shaft and the inertia of
the pulley.

Metric AT series belts have been designed
for high performance linear positioner
applications. Utilizing optimized, larger
tooth section and stronger steel reinforcing
tension members these belts provide a
significant increase in tooth stiffness and
overall belt stiffness.
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